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Quantum Nondeterministic Computation†
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We investigate the possible contribution of quantum measurement in yielding
the quantum computation speedup appearing in a modified version of Simon’s
algorithm.

Growing attention is being given to whether quantum algorithms follow
a common pattern (Cleve et al., 1997, among others) and the reason for the
quantum computation speedup with respect to Turning machine computation
(Ekert and Jozsa, 1998, among others). We shall apply the following interpre-
tation to Simon’s algorithm: quantum computation speedup comes from the
fact that the evolution of a quantum system undergoing measurement is
affected by both the initial actions (i.e., by the preparation of the initial state
and the subsequent unitary transformations) and by the need to satisfy some
logical-mathematical constraints set by the final action of measurement. The
most conspicuous constraint is that the outcome of a measurement is a single
eigenvalue/eigenstate of the measurement basis. These constraints are partly
or completely irrespective of the initial actions, and therefore the computation
process is affected in a nonredundant way by both the initial actions and the
final measurement action; in this sense we mean it is nondeterministic.2

In the interpretation we are going to propound, measurement is not only
needed to read the solution of the problem (or something useful to frame the
solution). Quite the contrary, together with the reversible initial actions,
measurement creates the solution in such a way that there is a computational
speedup. As a matter of fact, given a suitable preparation, the final measure-

† This paper is dedicated to the memory of Prof. Gottfried T. Rüttimann.
1 Elsag Bailey and Università di Genova, 16154 Genova, Italy.
2 In our interpretation, the quantum computation speedup is treated with the notion, due to
Finkelstein (1996), that there are only initial and final actions, with “quantum spontaneity”
(originated by measurement) in between.
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ment action can be seen as an analog form of computation which, at the same
time, introduces and satisfies a system of simultaneous Boolean equations
representing the problem to be solved, or the hard part thereof.

To show this, we consider a quantum system made of two n-qubit
registers a and v (a for argument, v for value of a function of that argument).
Given Bn 5 {0, 1}n, N 5 2n, let *av 5 span{.x&a .y&v}, with (x, y) running
over Bn 3 Bn, be the Hilbert space of the two registers, and

.w, t2&av 5
1

!N o
x

.x&a. f (x)&v (1)

be the quantum state before measurement, say at time t2 (subscripts will refer
to Fig. 1a; see below). Here w labels the ket, x runs over 0, 1, . . . , N 2 1,
and f(x) is a function from Bn to Bn. We designate the binary number stored
in register a (v), a Hermitian operator, by [a] ([v]).

Measuring [v] in state (1) yields some specific eigenvalue f P { f },
where { f } is the set of the eigenvalues for the measurement basis, which
must cover the values assumed by f (x). Correspondingly, the state of the
quantum system changes to

.b, t3&av 5 k o
x

.x&a. f &v (2)

where x runs over all x such that f (x) 5 f and k 5 .k.eid are a normalization
and a random phase factor (the latter will be understood from now on).
Although we are dealing with the evolution of the same quantum system,
we have changed labels from w to b to emphasize that .b, t3&av is not univocally
determined by .w, t2&av, for it is also influenced by the final measurement
action. In a problem-solving context, it is easy to see that there is more
than a random influence. This is best shown by using a special (algebraic)
representation of the usual description of quantum measurement, such that
the result of measurement becomes the solution of a system of simultaneous
equations applying to a ket variable belonging to the Hilbert space *av. This
ket variable, in elementary algebra, would be called the “unknown” of the
system of simultaneous equations.

Let us designate by .c&av this ket variable, which is only constrained by
normalization, thus: .c&av 5 (x,y axy.x&a.y&v , where (x, y) runs over Bn 3 Bn

and axy are complex variables independent of each other up to (x,y .axy.2 5
1. There are three equations, to be simultaneously applied to .c&av , whose
solution is the measurement outcome .b, t3&av.

(i) The measurement outcome must be a single value, namely any eigen-
value of the measurement basis. This constraint is represented by the projec-
tion equation
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Pv.c&av 5 .c&av, where Pv 5 . f &v^ f .v , f P { f } (3)

.c&av satisfying Eq. (3) is a ket variable belonging to the Hilbert subspace
*f

av 5 span{.x&a. f &v}, with x running over Bn and f being fixed. The number
of such subspaces is, of course, the number of the eigenvalues. It may be
convenient to think of the action of measurement as an analog form of
computation that we can choose to exploit; a significant logical constraint,
to be satisfied by the measurement outcome, is introduced by this very
choice. This is of course a universal constraint, holding for any initial actions,
therefore independent of the initial actions.

(ii) Provided that constraint (3) is satisfied, the inner product

.^c.av.w, t2&av. must be maximum (4)

.c&av, belonging to *f
av, and satisfying (4), becomes the projection of .w, t2&av

on *f
av. Together, (3) and (4) yield .c&av 5 k. f &v^ f .v.w, t2&av , f P { f }, where

k, depending on f, is a normalization factor. The operator . f &v^ f .v , to be
applied to .w, t2&av , is independent of the initial actions. It selects, out of the
superposition .w, t2&av , all and only those tensor products containing .f&v ,
which naturally survive in the measurement outcome.

(iii) The result of measuring [v] must be a specific value:

f 5 f (5)

where f is randomly chosen among the values of f (x) appearing in .w, t2&av

according to probability amplitudes. f is partly independent of .w, t2&av , for
it is stochastically related to it. We should note that only Eq. (5) is represented
in the usual statement that the measurement outcome is random, whereas Eq.
(3) and (4) are not.

The solution of the system of simultaneous equations (3)–(5) is .c&av 5
k. f &v^ f .v.w, t2&av 5 .b, t3&av , indeed the state after measurement of the quantum
system [Eq. (2)].

This shows that the outcome of the computation process is determined
by both the result of the initial actions .w, t2&av and the requirement of
satisfying a system of simultaneous constraints that are introduced by the
final measurement action and are partly independent of .w, t2&av . Of course,
this dual effect cannot apply to a classical evolution. Being (in principle)
completely determined by an initial condition, such an evolution cannot
satisfy a final constraint independent of it. We will show how this dual
influence can justify Simon algorithm computational speedup. The scheme
is that, by properly representing the problem to be solved in the state-before-
measurement, Eqs. (3)–(5) become a system of simultaneous Boolean equa-
tions customized on such a problem. Measurement, by both introducing and
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solving this system, produces the solution of the computationally hard part
of the problem.

We shall outline a modified version (Cleve et al., 1997) of Simon’s
algorithm (Simon, 1994). Given a 2-to-1 function f : Bn → Bn such that ∀x .
x8: f (x) 5 f (x8) → x 5 x8 1 r for some r P Bn, and hard to reverse by
known classical means, the problem is to find r in an efficient way, which here
means in poly(n) time. By hard-to-reverse, we mean that, for all arguments x,
computing f (x) requires poly(n) time, while for all values f of f (x), computing
the arguments x and x 1 r such that f (x) 5 f (x 1 r) 5 f requires exp(n) time.

Figure 1a gives the algorithm. H denotes the Hadamard transform (Cleve
et al., 1997), the Boolean gate f (x) identically repeats the input x (reg. a) in
a corresponding output, and computes f (x) adding it to the former content
(0) of register v. M denotes the action of measuring the content of a register.
The algorithm proceeds through the following actions:

(a) Prepare .w, t0&av 5 .0&a.0&v .
(b) Perform the H on register a: .w, t1&av 5 (1/!N) (x .x&a.0&v (N 5 2n).
(c) Compute f (x), add the result to the former content of register v: .w,

t2&av 5 (1/!N) (x .x&a. f (x)&v .
(d) Measure [v]: .b, t3&av 5 (1/!2)(.x&a 1 .x 1 r&a). f &v. Performing or

skipping step (d) is equivalent, but assuming it has been performed makes
understanding easier. This equivalence can be explained as follows. Let us
think of skipping step (d) and measure [a] first, at time t4. In Fig. 1a, M on
v should be shifted at least after t5. Whether [v] is measured after t5 is a
matter of indifference. Then we can think of measuring it. This induces a
“wave function collapse” (a convenient notion here) of the state of register
v on some . f &v. Since . f &v is disentangled from the state of register a, and
no operation is performed on register v after time t2, backdating collapse at
time t2 (which is legitimate, according to von Neumann and others) means
backdating the result of collapse (. f &v) as it is. This is equivalent to having
performed step (d).

(a) (b)
Fig. 1.
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Ekert and Jozsa (1998) have shown that quantum entanglement is essen-
tial in providing quantum computation speedup. After measuring f (x), there
remains no entanglement. The remaining actions, performed on register a,
use interference (which generates no entanglement) to “extract” r out of the
superposition (1/!2)(.x&a 1 .x 1 r&a). We conclude that greater than classical
efficiency has already been achieved by reaching .b, t3&av . r is “extracted”
as follows:

(e) Act with H on a: .b, t4&av 5 (1/!N) (z (21)x?z[1 1 (21)r?z].z&a. f &v;
the dot denotes the module 2 inner product of two numbers in binary notation.

(f) Measure [a] in .b, t4&av , obtaining the result z: r ? z must be 0 for
registered z—see the form of .b, t4&av .

(g) By repeating the overall computation a number of times poly(n) on
average, a number of constraints r ? z 5 0 sufficient to identify r is gathered.

Let us see how quantum computation speedup is achieved in the time
interval [t1, t3], involving entanglement creation and disentanglement. In
the modified Simon algorithm, the state-before-measurement is the super-
position: .w, t2&av 5 (1/!N) (x .x&a. f (x)&v, where x ranges over 0, 1, . . . ,
N 2 1. Given the character of f (x), the outcome of measuring [v] has the
form .b, t3&av 5 (1/!N)(.x&a 1 .x 1 r&a). f &v, where f (x) 5 f (x 1 r) 5 f. As
said before, we assume that efficiency has already been achieved by preparing
.b, t3&av which, for short, we can consider to be “the solution.”

It can be seen that measuring [v] in .w, t2&av brings in, through Eqs. (3)
and (4), the following constraints on the arguments and values of f (x): f (x1) 5
3Df (x2), x1 Þ x2. Since we are dealing with natural numbers, this is a succinct
way of representing a system of simultaneous Boolean equations. Equation
(5) becomes just the specification f (x1) 5 f (x2) 5 f. Figure 1b represents
this system in network form. The output of gate 1–2 yields the function c:
Bn 3 Bn → B defined as follows: c(x1, x2) 5 1 2 dx1,x2, where d is the
Kronecker symbol. In order to have x1 Þ x2, this output must be constrained
to 1. Both gates 1–3 and 2–4 transform an input x into the output f (x). We
should keep in mind that the network shown in Fig. 1b is just the representation
of a system of simultaneous Boolean equations: time is not involved [just
like in Eqs. (3)–(5)], thus inputs and outputs lose any time-related meaning:
they just stand for the arguments and the values of a function.

On one hand, since f (x) is hard-to-reverse, the Boolean network of Fig.
1b is hard to satisfy by classical means. As can be seen, finding a valuation
of x1 and x2 which satisfies the network implies reversing f (x) at least once,
given that gates 1–3 and 2–4 belong to a loop. This operation takes exp(n)
time by assumption. On the other hand, once .w, t2& has been prepared, the
network, no matter what its computational complexity, is concurrently created
and solved by the action of measuring [v]. A solution, a proper valuation of
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x1 and x2, is represented in the quantum superposition .b, t3&av (r can “easily”
be extracted from this superposition). Since .w, t2&av is prepared in poly(n)
time, there is an exponential speedup. In the case of Simon’s algorithm, given
proper initial actions, quantum measurement can be seen as an analog form
of computation, capable of satisfying a system of simultaneous Boolean
equations in one shot.
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